Geometric arguments yield better bounds for threshold circuits and distributed computing

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms and Lower Bounds for Threshold Circuits

A fundamental purpose of theory of computation is to understand differences between uniform computation and nonuniform one. In particular, Boolean circuit has been studied in an area of nonuniform computation models, because Boolean circuits are natural formalization of computer architecture and hardware. Boolean circuit is compared with uniform computation expressed as fixed size programs whic...

متن کامل

On the bounds in Poisson approximation for independent geometric distributed random variables

‎The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method‎. ‎Some results related to random sums of independent geometric distributed random variables are also investigated.

متن کامل

Better Lower Bounds for Monotone Threshold Formulas

We show that every monotone formula that computes the threshold function THk,n, 2 ≤ k ≤ n2 , has size at least ⌊ k 2 ⌋ n log( n k−1 ). The same lower bound is shown to hold in the stronger monotone directed contact networks model.

متن کامل

on the bounds in poisson approximation for independent geometric distributed random variables

‎the main purpose of this note is to establish some bounds in poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method‎. ‎some results related to random sums of independent geometric distributed random variables are also investigated.

متن کامل

Energy-Efficient Threshold Circuits Computing Mod Functions

We prove that the modulus function MODm of n variables can be computed by a threshold circuit C of energy e and size s = O(e(n/m)1/(e−1)) for any integer e ≥ 2, where the energy e is defined to be the maximum number of gates outputting “1” over all inputs to C, and the size s to be the number of gates in C. Our upper bound on the size s almost matches the known lower bound s = Ω(e(n/m)1/e). We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 1996

ISSN: 0304-3975

DOI: 10.1016/0304-3975(95)00005-4